Title
|
|
|
|
Probing charge density wave phases and the Mott transition in 1T-TaS₂I by inelastic light scattering
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
We present a polarization-resolved, high-resolution Raman scattering study of the three consecutive charge density wave (CDW) regimes in 1T-TaS2 single crystals, supported by ab initio calculations. Our analysis of the spectra within the low-temperature commensurate (C-CDW) regime shows P (3) over bar symmetry of the system, thus excluding the previously proposed triclinic stacking of the "star-of-David" structure, and promoting trigonal or hexagonal stacking instead. The spectra of the high-temperature incommensurate (IC-CDW) phase directly project the phonon density of states due to the breaking of the translational invariance, supplemented by sizable electron-phonon coupling. Between 200 and 352 K, our Raman spectra show contributions from both the IC-CDW and the C-CDW phases, indicating their coexistence in the so-called nearly commensurate (NC-CDW) phase. The temperature dependence of the symmetry-resolved Raman conductivity indicates the stepwise reduction of the density of states in the CDW phases, followed by a Mott transition within the C-CDW phase. We determine the size of the Mott gap to be Omega(gap) approximate to 170-190 meV, and track its temperature dependence. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review B / American Physical Society. - New York, N.Y, 2016, currens
| |
Publication
|
|
|
|
New York, N.Y
:
American Physical Society
,
2021
| |
ISSN
|
|
|
|
2469-9969
[online]
2469-9950
[print]
| |
DOI
|
|
|
|
10.1103/PHYSREVB.103.245133
| |
Volume/pages
|
|
|
|
103
:24
(2021)
, 10 p.
| |
Article Reference
|
|
|
|
245133
| |
ISI
|
|
|
|
000664450500002
| |
Medium
|
|
|
|
E-only publicatie
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|