Publication
Title
Pulmonary nodule detection in chest CT using a deep learning-based reconstruction algorithm
Author
Abstract
This study’s aim was to assess whether deep learning image reconstruction (DLIR) techniques are non-inferior to ASIR-V for the clinical task of pulmonary nodule detection in chest computed tomography. Up to 6 (range 3–6, mean 4.2) artificial lung nodules (diameter: 3, 5, 8 mm; density: −800, −630, +100 HU) were inserted at different locations in the Kyoto Kagaku Lungman phantom. In total, 16 configurations (10 abnormal, 6 normal) were scanned at 7.6, 3, 1.6 and 0.38 mGy CTDIvol (respectively 0, 60, 80 and 95% dose reduction). Images were reconstructed using 50% ASIR-V and a deep learning-based algorithm with low (DL-L), medium (DL-M) and high (DL-H) strength. Four chest radiologists evaluated 256 series by locating and scoring nodules on a five-point scale. No statistically significant difference was found among the reconstruction algorithms (p = 0.987, average across readers AUC: 0.555, 0.561, 0.557, 0.558 for ASIR-V, DL-L, DL-M, DL-H).
Language
English
Source (journal)
Radiation protection dosimetry. - Ashford
Publication
Ashford : 2021
ISSN
0144-8420
DOI
10.1093/RPD/NCAB025
Volume/pages
195 :3-4 (2021) , p. 158-163
ISI
000711245400006
Pubmed ID
33723584
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 26.08.2021
Last edited 15.01.2025
To cite this reference