Publication
Title
Warming affects soil metabolome : the case study of Icelandic grasslands
Author
Abstract
The effect of warming is stronger in arctic and sub-arctic latitudes than in temperate and tropical zones. We studied soil metabolomes along two soil-warming gradients (0 to +15 degrees C). One temperature gradient has been present for at least 50 years and possibly even centuries (long-term treatment), while the second gradient was created after a shallow crustal earthquake in 2008 (short-term treatment). Soil metabolomes at the two sites responded differently to warming. At the short-term warmed site, warming of +3 degrees C already shifted soil metabolomic profiles relative to the controls, whereas at the long-term warmed site the soil metabolome only shifted at temperatures +5 degrees C. Saccharides and amino acids, primary metabolites involved in protective mechanisms against heat, were the main compounds accumulated at the highest soil warming levels. Some secondary metabolites associated with a broad spectrum of stressors, like phenolic acids and terpenes, were also up-regulated. Across the IPCC scenario's, most climate models predict a substantial rise in mean annual temperature of up to 8 degrees C in the Arctic region by the end of the 21st century. Our results suggest that temperature increases of >+5 degrees C would permanently alter soil metabolomic profile, whereas smaller temperature increases of (<+3 C) would affect soil metabolome profile transiently, not permanently.
Language
English
Source (journal)
European journal of soil biology. - Paris
Publication
Paris : 2021
ISSN
1164-5563
DOI
10.1016/J.EJSOBI.2021.103317
Volume/pages
105 (2021) , 8 p.
Article Reference
103317
ISI
000674539100009
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Effects of phosphorus limitations on Life, Earth system and Society (IMBALANCE-P).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 30.08.2021
Last edited 02.10.2024
To cite this reference