Title
|
|
|
|
DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
The journal of physical chemistry: C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
|
|
Publication
|
|
|
|
Washington, D.C.
:
2021
|
|
ISSN
|
|
|
|
1932-7447
[print]
1932-7455
[online]
|
|
DOI
|
|
|
|
10.1021/ACS.JPCC.1C03914
|
|
Volume/pages
|
|
|
|
125
:34
(2021)
, p. 18673-18683
|
|
ISI
|
|
|
|
000693413400013
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|
Full text (publisher's version - intranet only)
|
|
|
|
|
|