Publication
Title
DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation
Author
Abstract
Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.
Language
English
Source (journal)
The journal of physical chemistry: C : nanomaterials and interfaces. - Washington, D.C., 2007, currens
Publication
Washington, D.C. : 2021
ISSN
1932-7447 [print]
1932-7455 [online]
DOI
10.1021/ACS.JPCC.1C03914
Volume/pages
125 :34 (2021) , p. 18673-18683
ISI
000693413400013
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Computational exploration of new pathways in gas conversion on novel nanocatalysts.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.10.2021
Last edited 02.10.2024
To cite this reference