Publication
Title
Localization in power-constrained Terahertz-operating software-defined metamaterials
Author
Abstract
Software-Defined Metamaterials (SDMs) show a strong potential for advancing the engineered control of electromagnetic waves. As such, they are envisioned to enable a variety of exciting applications, among others in the domains of smart textiles, high-resolution structural monitoring, and sensing in challenging environments. Many of the applications envisage deformations of the SDM structures, such as their bending, stretching or rolling, which implies that the locations of metamaterial elements will be changing relative to one another. In this paper, we argue that if the metamaterial elements would be accurately localizable, this location information could potentially be utilized for enabling novel SDM applications, as well as for optimizing the control of the elements themselves. To enable their localization, we assume that these elements are controlled wirelessly through a Terahertz (THz)operating nanonetwork. We consider the elements to be power-constrained, with their sole powering option being to harvest energy from different environmental sources. By means of simulation, we demonstrate sub-millimeter accuracy of the two-way Time of Flight (ToF)-based localization, as well as high availability of the service (i.e., consistently more than 80% of the time), which is a result of the low energy consumed in the localization process. Finally, we qualitatively characterize the latency of the proposed localization service, as well as outline several challenges and future research directions. (C) 2021 Elsevier B.V. All rights reserved.
Language
English
Source (journal)
Nano Communication Networks
Publication
2021
ISSN
1878-7789
DOI
10.1016/J.NANCOM.2021.100365
Volume/pages
30 (2021) , 17 p.
Article Reference
100365
ISI
000702883400001
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Scalable Localization-enabled In-body Terahertz Nanonetwork (ScaleITN).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.11.2021
Last edited 02.10.2024
To cite this reference