Publication
Title
B₂O₃ nanoparticles alleviate salt stress in maize leaf growth zones by enhancing photosynthesis and maintaining mineral and redox status
Author
Abstract
Salt stress induces significant loss in crop yield worldwide. Although the growth-stimulating effects of micronutrient nanoparticles (NPs) application under salinity have been studied, the molecular and biochemical mechanisms underlying these effects are poorly understood. The large size of maize leaf growth zones provides an ideal model system to sample and investigate the molecular and physiological bases of growth at subzonal resolution. Using kinematic analysis, our study indicated that salinity at 150 mM inhibited maize leaf growth by decreasing cell division and expansion in the meristem and elongation zones. Consistently, salinity downregulated cell cycle gene expression (wee1, mcm4, and cyclin-B2-4). B2O3 NP (BNP) mitigated the stress-induced growth inhibition by reducing the decrease in cell division and expansion. BNP also enhanced the photosynthesis-related parameters. Simultaneously, chlorophyll, phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase/oxygenase were stimulated in the mature zone. Concomitant with growth stimulation by BNP, mineral homeostasis, particularly for B and Ca, was monitored. BNP reduced oxidative stress (e.g., lessened H2O2 generation along the leaf zones and reduced lipid peroxidation in the mature zone) induced by salinity. This resulted from better maintenance of the redox status, that is, increased the glutathioneascorbate cycle in the meristem and elongation zones, and flavonoids and tocopherol levels in the mature zone. Our study has important implications for assessing the salinity stress impact mitigated by BNP on maize growth, providing a basis to improve the resilience of crop species under salinity stress conditions.
Language
English
Source (journal)
Physiologia plantarum. - Lund
Publication
Lund : 2023
ISSN
0031-9317
DOI
10.1111/PPL.14033
Volume/pages
175 :5 (2023) , p. 1-14
Article Reference
e14033
ISI
001070683400001
Pubmed ID
37882299
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 30.10.2023
Last edited 22.11.2023
To cite this reference