Publication
Title
Artificial intelligence scoring of liver biopsies in a phase II trial of semaglutide in nonalcoholic steatohepatitis
Author
Abstract
Background and Aims: Artificial intelligence-powered digital pathology offers the potential to quantify histological findings in a reproducible way. This analysis compares the evaluation of histological features of NASH between pathologists and a machine-learning (ML) pathology model.Approach and Results: This post hoc analysis included data from a subset of patients (n=251) with biopsy-confirmed NASH and fibrosis stage F1-F3 from a 72-week randomized placebo-controlled trial of once-daily subcutaneous semaglutide 0.1, 0.2, or 0.4 mg (NCT02970942). Biopsies at baseline and week 72 were read by 2 pathologists. Digitized biopsy slides were evaluated by PathAI's NASH ML models to quantify changes in fibrosis, steatosis, inflammation, and hepatocyte ballooning using categorical assessments and continuous scores. Pathologist and ML-derived categorical assessments detected a significantly greater percentage of patients achieving the primary endpoint of NASH resolution without worsening of fibrosis with semaglutide 0.4 mg versus placebo (pathologist 58.5% vs. 22.0%, p < 0.0001; ML 36.9% vs. 11.9%; p=0.0015). Both methods detected a higher but nonsignificant percentage of patients on semaglutide 0.4 mg versus placebo achieving the secondary endpoint of liver fibrosis improvement without NASH worsening. ML continuous scores detected significant treatment-induced responses in histological features, including a quantitative reduction in fibrosis with semaglutide 0.4 mg versus placebo (p=0.0099) that could not be detected using pathologist or ML categorical assessment.Conclusions: ML categorical assessments reproduced pathologists' results of histological improvement with semaglutide for steatosis and disease activity. ML-based continuous scores demonstrated an antifibrotic effect not measured by conventional histopathology.
Language
English
Source (journal)
Hepatology / American Association for the Study of Liver Diseases. - Baltimore, Md
Publication
Philadelphia : Lippincott williams & wilkins , 2024
ISSN
0270-9139
DOI
10.1097/HEP.0000000000000723
Volume/pages
80 :1 (2024) , p. 173-185
ISI
001141691000001
Pubmed ID
38112484
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 01.02.2024
Last edited 08.12.2024
To cite this reference