Electrochemical sensing strategies for multiple illicit drugs
Today, illicit drugs are omnipresent in society. Clandestine markets are growing faster than ever before, record amounts of cocaine are seized in seaports and airports, while the associated violence is spiralling out of control. In addition, drug monitoring centres worldwide are warning for the increasing complexity of the drug markets, as the traditionally popular drugs are joined by countless new synthetic variants, while medical drugs are also increasingly being abused. In order to provide services confronted with illicit drug samples (police, customs, forensic scientists, first responders, …) with important information on the identity of an unknown sample, suitable analytical tests are required. While these exist for laboratory environments, on-site applicable tests are important to accelerate the decision-making process. Electrochemical sensors have all the advantages required for such on-site tests: they are fast, portable, easy-to-use and reliable. Furthermore, they are not influenced by colours, which are frequently added to drug samples to deceive the existing tests. Previous work has mainly focussed on the detection of a single drug per analysis. However, many drugs could be encountered due to the diversity of the drug markets. Therefore, this project developed electrochemical strategies for the detection of multiple drugs simultaneously. First, the electrochemical behaviour of the individual drugs was studied in different measuring conditions (assessing the influence of pH, concentration and temperature). Then, all findings and strategies were combined to detect multiple targets simultaneously. An electrochemical sensor was developed for the four most popular drugs at music festivals: cocaine, MDMA, amphetamine and ketamine. This sensor generates a so-called ‘superfingerprint’ of the sample, which is then automatically interpreted by a developed algorithm in order to produce a straightforward output. Finally, a pill analysis sensor was developed in the context of drug checking services, where a consumer can anonymously have a sample chemically analysed to obtain information on the composition, dose and potentially harmful additives. The sensor achieved an outstanding accuracy in identifying the main component and provided the option to quantify, as well as an indication on the presence of other substances in the sample. The project’s findings demonstrate the potential for electrochemistry in illicit drug detection and provide a basis for the development of new sensors, targeting other drug combinations.
Antwerp : University of Antwerp, Faculty of Science, Department of Bioscience Engineering , 2024
290 p.
Supervisor: De Wael, Karolien [Supervisor]
Supervisor: Parrilla Pons, Marc [Supervisor]
Full text (publisher's version - intranet only)
Research group
Publication type
Publications with a UAntwerp address
External links
Creation 19.02.2024
Last edited 17.06.2024
To cite this reference