Publication
Title
Core-loss EELS dataset and neural networks for element identification
Author
Abstract
We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  - read the simulated data - transform HDF5 format to TFRecord format - train and evaluate neural networks using the simulated data - use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. __APL Mater__ 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Language
English
Related publication(s)
Publication
Zenodo , 2023
DOI
10.5281/ZENODO.8004912
Volume/pages
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Project info
Interoperable electron Microscopy Platform for advanced RESearch and Services (IMPRESS).
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Record
Identifier
Creation 27.02.2024
Last edited 18.04.2024
To cite this reference