Publication
Title
Is a portable pressure plate an alternative to force plates for measuring postural stability and interlimb coordination of quiet standing balance control?
Author
Abstract
Introduction: Center-of-pressure (COP) synchronization and symmetry can inform adaptations in balance control following one-sided sensorimotor impairments (e.g., stroke). As established force plates are impossible to transport, we aimed to criterion validate a portable pressure plate for obtaining reliable COP synchronization and symmetry measures, next to conventional postural stability measures. Methods: Twenty healthy adults participated. In a single session, three 40-s eyes-open and eyes-closed quiet stance trials were performed per plate-type, randomly ordered. Individual-limb COPs were measured to calculate between-limb synchronization (BLS) and dynamic control asymmetry (DCA). Net COP (i.e., limbs combined) area, amplitude, and velocity were used to describe anteroposterior (AP) and mediolateral (ML) postural stability. Criterion validity was evaluated using Spearman correlations (r) and Bland-Altman plots. Test-retest reliability was tested using intraclass correlation coefficients (ICC). Results: Strong correlations (r > 0.75) and acceptable reliability (ICC > 0.80) were found regarding individual-limb COP velocity and DCA, net COP ML amplitude and AP and ML velocities. Bland-Altman plots yielded possible proportional bias; the pressure plate systematically underestimated COP scores by force plates and a larger error associated with a larger measurement. Conclusions: Despite correlations between instruments and sufficient reliability for measuring postural stability and DCA, this technical note strongly suggests, due to a systematic deviation, using the same plate-type to accurately assess performance change within subjects longitudinally over time.
Language
English
Source (journal)
Journal of Rehabilitation and Assistive Technologies Engineering
Publication
2024
ISSN
2055-6683
DOI
10.1177/20556683241234858
Volume/pages
11 (2024) , p. 1-10
Article Reference
20556683241234858
ISI
001179529800001
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Can stroke survivors re-learn normal walking? Understanding functional recovery and effects of exoskeleton-assisted training.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 29.03.2024
Last edited 05.04.2024
To cite this reference