Publication
Title
A mini-review of the anti-SARS-CoV-2 potency of Amaryllidaceae alkaloids
Author
Abstract
Background Nature has perennially served as an infinite reservoir of diverse chemicals with numerous applications benefiting humankind. In recent years, due to the emerging COVID-19 pandemic, there has been a surge in studies on repurposing natural products as anti-SARS-CoV-2 agents, including plant-derived substances. Among all types of natural products, alkaloids remain one of the most important groups with various known medicinal values. The current investigation focuses on Amaryllidaceae alkaloids (AAs) since AAs have drawn significant scientific attention as anti-SARS-CoV-2 agents over the past few years. Purpose and study design This study serves as a mini-review, summarizing recent advances in studying the anti-SARS-CoV-2 potency of AAs, covering two aspects: structure-activity relationship and mechanism of action (MOA). Methods The study covers the period from 2019 to 2023. The information in this review were retrieved from common databases including Web of Science, ScienceDirect, PubMed and Google scholar. Reported anti-SARS-CoV-2 potency, cytotoxicity and possible biological targets of AAs were summarized and classified into different skeletal subclasses. Then, the structure-activity relationship (SAR) was explored, pinpointing the key pharmacophore-related structural moieties. To study the mechanism of action of anti-SARS-CoV-2 AAs, possible biological targets were discussed. Results In total, fourteen research articles about anti-SARS-CoV-2 was selected. From the SAR point of view, four skeletal subclasses of AAs (lycorine-, galanthamine-, crinine- and homolycorine-types) appear to be promising for further investigation as anti-SARS-CoV-2 agents despite experimental inconsistencies in determining in vitro half maximal inhibitory effective concentration (EC50). Narciclasine, haemanthamine- and montanine-type skeletons were cytotoxic and devoid of anti-SARS-CoV-2 activity. The lycorine-type scaffold was the most structurally diverse in this study and preliminary structure-activity relationships revealed the crucial role of ring C and substituents on rings A, C and D in its anti-SARS-CoV-2 activity. It also appears that two enantiomeric skeletons (haemanthamine- and crinine-types) displayed opposite activity/toxicity profiles regarding anti-SARS-CoV-2 activity. Pharmacophore-related moieties of the haemanthamine/crinine-type skeletons were the substituents on rings B, C and the dioxymethylene moiety. All galanthamine-type alkaloids in this study were devoid of cytotoxicity and it appears that varying substituents on rings C and D could enhance the anti-SARS-CoV-2 potency. Regarding MOAs, initial experimental results suggested Mpro and RdRp as possible viral targets. Dual functionality between anti-inflammatory activity on host cells and anti-SARS-CoV-2 activity on the SARS-CoV-2 virus of isoquinoline alkaloids, including AAs, were suggested as the possible MOAs to alleviate severe complications in COVID-19 patients. This dual functionality was proposed to be related to the p38 MAPK signaling pathway. Conclusion Overall, Amaryllidaceae alkaloids appear to be promising for further investigation as anti-SARS-CoV-2 agents. The skeletal subclasses holding the premise for further investigation are lycorine-, crinine-, galanthamine- and homolycorine-types.
Language
English
Source (journal)
Phytomedicine: international journal of phytotherapy and phytopharmacology. - Stuttgart
Publication
Stuttgart : 2024
ISSN
0944-7113
DOI
10.1016/J.PHYMED.2024.155576
Volume/pages
129 (2024) , p. 1-9
Article Reference
155576
ISI
001217737900001
Pubmed ID
38579643
Full text (Publisher's DOI)
Full text (open access)
The author-created version that incorporates referee comments and is the accepted for publication version Available from 04.10.2024
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Project info
Anti-inflammatory iridoids and alkaloids from some widely used and some less explored medicinal plants.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 05.04.2024
Last edited 06.07.2024
To cite this reference