Publication
Title
Improving cardiac differentiation of human pluripotent stem cells by targeting ferroptosis
Author
Abstract
Generation of cardiomyocytes from human pluripotent stem cells (hPSCs) is of high interest for disease modelling and regenerative medicine. hPSCs can provide an unlimited source of patient-specific cardiomyocytes that are otherwise difficult to obtain from individuals. Moreover, the low proliferation rate of adult cardiomyocytes and low viability ex vivo limits the quantity of study material. Most protocols for the differentiation of cardiomyocytes from hPSCs are based on the temporal modulation of the Wnt pathway. However, during the initial stage of GSK-3 inhibition, a substantial number of cells are lost due to detachment. In this study, we aimed to increase the efficiency of generating cardiomyocytes from hPSCs. We identified cell death as a detrimental factor during this initial stage of in vitro cardiomyocyte differentiation. Through pharmacological targeting of different types of cell death, we discovered that ferroptosis was the main cell death type during the first 48 h of the in vitro differentiation procedure. Inhibiting ferroptosis using ferrostatin-1 during cardiomyocyte differentiation resulted in increased robustness and cell yield. (c) 2024, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Language
English
Source (journal)
Regenerative Therapy
Publication
2024
ISSN
23523204
2352-3204
DOI
10.1016/J.RETH.2024.02.007
Volume/pages
27 (2024) , p. 21-31
ISI
001202340100001
Pubmed ID
38496011
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.05.2024
Last edited 08.05.2024
To cite this reference