Publication
Title
Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge
Author
Abstract
The electron distribution function (EDF) in an electron cyclotron resonance (ECR) discharge is far from Maxwellian. The self-consistent simulation of ECR discharges requires a calculation of the EDF on every magnetic line for various ion density profiles. The straightforward self-consistent simulation of ECR discharges using the Monte Carlo technique for the EDF calculation is very computer time expensive, since the electron and ion time scales are very different. An electron Boltzmann kinetic equation averaged over the fast electron bouncing and pitch-angle scattering was derived in order to develop an effective and operative tool for the fast modeling (FM) of low-pressure ECR discharges. An analytical solution for the EDF in a loss cone was derived. To check the validity of the FM, one-dimensional (in coordinate) and two-dimensional (in velocity) Monte Carlo simulation codes were developed. The validity of the fast modeling method is proved by comparison with the Monte Carlo simulations. The complete system of equations for FM is presented and ready for use in a comprehensive study of ECR discharges. The variations of plasma density and of wall and sheath potentials are analyzed by solving a self-consistent set of equations for the EDF.
Language
English
Source (journal)
Physical review : E : statistical, nonlinear, and soft matter physics / American Physical Society. - Melville, N.Y., 2001 - 2015
Publication
Melville, N.Y. : American Physical Society , 2000
ISSN
1539-3755 [print]
1550-2376 [online]
DOI
10.1103/PHYSREVE.61.1875
Volume/pages
61 :2 (2000) , p. 1875-1889
ISI
000085410600117
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Project info
Publication type
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 08.10.2008
Last edited 04.03.2024
To cite this reference