A candidate-set-free algorithm for generating D-optimal split-plot designsA candidate-set-free algorithm for generating D-optimal split-plot designs
Faculty of Applied Economics

Engineering Management

Mathematics, Statistics and Actuarial Sciences

report

Antwerp :UA, 2006[*]2006

Engineering sciences. Technology

Research paper / UA, Faculty of Applied Economics ; 2006:6

24 p.

1

E

English (eng)

University of Antwerp

We introduce a new method for generating optimal split-plot designs. These designs are optimal in the sense that they are efficient for estimating the fixed effects of the statistical model that is appropriate given the split-plot design structure. One advantage of the method is that it does not require the prior specification of a candidate set. This makes the production of split-plot designs computationally feasible in situations where the candidate set is too large to be tractable. The method allows for flexible choice of the sample size and supports inclusion of both continuous and categorical factors. The model can be any linear regression model and may include arbitrary polynomial terms in the continuous factors and interaction terms of any order. We demonstrate the usefulness of this flexibility with a 100-run polypropylene experiment involving 11 factors where we found a design that is substantially more efficient than designs produced using other approaches.

https://repository.uantwerpen.be/docman/irua/e83c6b/4f433e40.pdf