Title
|
|
|
|
Calculation of gas heating in a dc sputter magnetron
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
The effect of gas heating in laboratory sputter magnetrons is investigated by means of numerical modeling. The model is two-dimensional in the coordinate space and three-dimensional in the velocity space based on the particle-in-cellMonte Carlo collisions technique. It is expanded in a way that allows the inclusion of the neutral plasma particles (fast gas atoms and sputtered atoms), which makes it possible to calculate the gas temperature and its influence on the discharge behavior in a completely self-consistent way. The results of the model are compared to experimental measurements and to other existing simulation results. The results show that gas heating is pressure dependent (rising with the increase in the gas pressure) and should be taken into consideration at pressures above 10 mTorr. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Journal of applied physics / American Institute of Physics. - New York, N.Y., 1937, currens
|
|
Publication
|
|
|
|
New York, N.Y.
:
American Institute of Physics
,
2008
|
|
ISSN
|
|
|
|
0021-8979
[print]
1089-7550
[online]
|
|
DOI
|
|
|
|
10.1063/1.2970166
|
|
Volume/pages
|
|
|
|
104
:9
(2008)
, p. 093301,1-093301,8
|
|
ISI
|
|
|
|
000260941700017
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (publisher's version - intranet only)
|
|
|
|
|
|