Title
Dietary cholesterol withdrawal reduces vascular inflammation and induces coronary plaque stabilization in miniature pigs
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Faculty of Medicine and Health Sciences
Publication type
article
Publication
London ,
Subject
Veterinary medicine
Source (journal)
Cardiovascular research. - London
Volume/pages
56(2002) :1 , p. 135-144
ISSN
0008-6363
ISI
000178534200016
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Objective: To study the effect of dietary cholesterol withdrawal on size and composition of LDL-hypercholesterolemia-induced coronary plaques in miniature pigs. Methods: Pigs were on normal chow (control group), on a cholesterol-rich diet for 37 weeks (hypercholesterolemic group) or on a cholesterol-rich diet followed by normal chow for 26 weeks (cholesterol withdrawal group). Endothelial function was assessed with quantitative angiography after intracoronary infusion of acetylcholine, plaque load with intra-coronary ultrasound and plaque composition with image analysis of cross-sections. The effect of porcine serum on coronary smooth muscle cell (SMC) function was studied in vitro. Results: Cholesterol-rich diet caused LDL-hypercholesterolemia, increased plasma levels of oxidized LDL (ox-LDL) and C-reactive protein (CRP), and induced endothelial dysfunction and coronary atherosclerosis. Dietary cholesterol withdrawal lowered LDL, ox-LDL and CRP. It restored endothelial function, did not affect plaque size but decreased lipid, ox-LDL and macrophage content. Smooth muscle cells and collagen accumulated within the plaque. Increased smoothelin-to--smooth muscle actin ratio indicated a more differentiated SMC phenotype. Cholesterol lowering reduced proliferation and apoptosis. In vitro, hypercholesterolemic serum increased SMC apoptosis and decreased SMC migration compared to non-hypercholesterolemic serum. Conclusions: Cholesterol lowering induced coronary plaque stabilization as evidenced by a decrease in lipids, ox-LDL, macrophages, apoptosis and cell proliferation, and an increase in differentiated SMC and collagen. Increased migration and decreased apoptosis of SMC may contribute to the disappearance of the a-cellular core after lipid lowering.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000178534200016&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000178534200016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000178534200016&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle