Title
Which plant traits promote growth in the low-light regimes of vegetation gaps? Which plant traits promote growth in the low-light regimes of vegetation gaps?
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
Dordrecht ,
Subject
Biology
Source (journal)
Plant ecology. - Dordrecht
Volume/pages
200(2009) :2 , p. 303-318
ISSN
1385-0237
ISI
000262088800014
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Nine temperate grass species were screened for their potential to grow in the low-light conditions typical of gaps in dense vegetation. To this end, photosynthetic photon flux densities (PFD) were simulated in a growth chamber (PFD 100, 50 or 25 ìmol photons m−2 s−1). Relative and absolute growth rates (RGR and AGR, respectively) of the species were regressed on ten different ecophysiological and morphogenetic plant attributes. No significant relationships were found between plant attributes and relative growth rate, while six attributes explained a significant proportion of the interspecific variance in absolute biomass growth: net photosynthetic rate at growth PFD (P net ) (75.5%), leaf apparent quantum yield of CO2 fixation (62.5%), leaf dark respiration rate (65.2%), leaf compensation PFD (71.0%), root: shoot ratio (66.4%) and plant nitrogen content on a mass basis (42.0%). Only species with extremely low allocation to roots and very high (relatively speaking) net photosynthetic rates were able to grow fast in low light. Specific leaf area (SLA), instantaneous photosynthetic nitrogen use efficiency (PNUE) and leaf nitrogen content on a mass basis as well as on an area basis were not significantly related to growth. The absence of effects of plant traits on RGR, unlike for AGR, could arise from a relationship that we observed between AGR and a fitted start value of the biomass-time course (i.e. seed mass or germination time). This suggests that interspecific differences in the very early growth stages of the plants were responsible for differences in successful development under low light, rather than differences in RGR. Based on its high explanatory power, its relative constancy with plant age and the lack of effect of growth PFD, P net would be the best candidate for characterizing potentially shade-tolerant species that are likely to establish in dense vegetation in the field.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000262088800014&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000262088800014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000262088800014&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle