Publication
Title
Magneto-optical imaging of flux penetration into arrays of microdisks
Author
Abstract
We have used differential magneto-optical (MO) imaging to investigate the mixed state of superconducting Bi2Sr2CaCu2O8+ (BSCCO) microdisks fabricated on a single-crystal sample. MO difference images of the stray field distribution over a range of out-of-plane fields allow us to distinguish between flux that is penetrating the disks and that entering the underlying BSCCO platelet. We find that flux preferentially flows along linear defects into the interstitial platelet regions up to a characteristic field Hp, above which flux enters the disks. We identify this as the field of first penetration of pancake vortices over the Bean-Livingston barrier around the disks, where Hp(T) at intermediate temperatures is well described by an exponentially decaying function with a characteristic temperature T0=19 K. At a given temperature, a minority of the disks exhibit a lower penetration field and we correlate the location of these disks with the linear defects in the BSCCO crystal.
Language
English
Source (journal)
Physical review : B : solid state. - Lancaster, Pa, 1970 - 1978
Publication
Lancaster, Pa : 2008
ISSN
0556-2805
DOI
10.1103/PHYSREVB.78.132501
Volume/pages
78 :13 (2008) , p. 132501,1-132501,4
ISI
000260574200018
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 28.04.2009
Last edited 13.12.2021
To cite this reference