Publication
Title
Tunneling, conductance, and wavevector filtering through magnetic barriers in bilayer graphene
Author
Abstract
We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In particular we consider a magnetic step, single and double barriers, -function barriers, as well as barrier structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevector filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a variety of transmission resonances occur that are reflected in the conductance through the structure.
Language
English
Source (journal)
Physical review : B : solid state. - Lancaster, Pa, 1970 - 1978
Publication
Lancaster, Pa : 2009
ISSN
0556-2805
Volume/pages
79:3(2009), p. 035409,1-035409,8
ISI
000262978200107
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 06.05.2009
Last edited 11.07.2017
To cite this reference