Title
Higher epistasis in genetic algorithms Higher epistasis in genetic algorithms
Author
Faculty/Department
Faculty of Sciences. Mathematics and Computer Science
Publication type
article
Publication
Brisbane ,
Subject
Mathematics
Source (journal)
Bulletin of the Australian Mathematical Society. - Brisbane
Volume/pages
77(2008) :2 , p. 225-243
ISSN
0004-9727
ISI
000257504100004
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
We study the k-epistasis of a fitness function over a search space. This concept is a natural generalization of that of epistasis, previously considered by Davidor, Suys and Verschoren and Van Hove and Verschoren [Y.Davidor, in: Foundations of genetic algorithms, Vol. 1, (1991), pp. 2325; D. Suys and A. Verschoren, Proc Int. Conf. on Intelligent Technologies in Human-Related Sciences (ITHURS96), Vol. II (1996), pp. 251258; H. Van Hove and A. Verschoren ,Comput. Artificial Intell. 14 (1994), 271277], for example. We completely characterize fitness functions whose k-epistasis is minimal: these are exactly the functions of order k. We also obtain an upper bound for the k-epistasis of nonnegative fitness functions.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257504100004&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257504100004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000257504100004&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle