Title
Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Cambridge ,
Subject
Chemistry
Source (journal)
Journal of environmental monitoring. - Cambridge, 1999 - 2012
Volume/pages
10(2008) :10 , p. 1148-1157
ISSN
1464-0325
1464-0333
ISI
000259890100005
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Mass, major ionic components (MICs) of PM2.5, and related gaseous pollutants (SO2, NOx, NH3, HNO2, and HNO3) were monitored over six locations of different anthropogenic influence (industrial, urban, suburban, and rural) in Belgium. SO42-, NO3-, NH4+, and Na+ were the primary ions of PM2.5 with averages diurnal concentrations ranging from 0.44.5, 0.37.6, 0.94.9, and 0.41.2 µg m-3, respectively. MICs formed 39% of PM2.5 on an average, but it could reach up to 8098%. The SO2, NO, NO2, HNO2, and HNO3 levels showed high seasonal and site-specific fluctuations. The NH3 levels were similar over all the sites (26 µg m-3), indicating its relation to the evenly distributed animal husbandry activities. The sulfur and nitrogen oxidation ratios for PM2.5 point towards a low-to-moderate formation of secondary sulfate and nitrate aerosols over five cities/towns, but their fairly intensive formation over the rural Wingene. Cluster analysis revealed the association of three groups of compounds in PM2.5: (i) NH4NO3, KNO3; (ii) Na2SO4; and (iii) MgCl2, CaCl2, MgF2, CaF2, corresponding to anthropogenic, sea-salt, and mixed (sea-salt + anthropogenic) aerosols, respectively. The neutralization and cation-to-anion ratios indicate that MICs of PM2.5 appeared mostly as (NH4)2SO4 and NH4NO3 salts. Sea-salt input was maximal during winter reaching up to 12% of PM2.5. The overall average Cl-loss for sea-salt particles of PM2.5 at the six sites varied between 69 and 96% with an average of 87%. Principal component analysis revealed vehicular emission, coal/wood burning and animal farming as the dominating sources for the ionic components of PM2.5.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000259890100005&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000259890100005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000259890100005&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle