Publication
Title
Addition of yttrium into films: microstructure and electrical properties
Author
Abstract
The cubic phase of HfO2 was stabilized by addition of yttrium in thin films grown on Si/SiO2 by metal-organic chemical vapor deposition. The cubic phase was obtained for contents of 6.5 at. % Y or higher at a temperature as low as 470 °C. The complete compositional range (from 1.5 to 99.5 at. % Y) was investigated. The crystalline structure of HfO2 was determined from x-ray diffraction, electron diffraction, and attenuated total-reflection infrared spectroscopy. For cubic films, the continuous increase in the lattice parameter indicates the formation of a solid-solution HfO2Y2O3. As shown by x-ray photoelectron spectroscopy, yttrium silicate is formed at the interface with silicon; the interfacial layer thickness increases with increasing yttrium content and increasing film thickness. The dependence of the intrinsic relative permittivity r as a function of Y content was determined. It exhibits a maximum of ~30 for ~8.8 at. % Y. The cubic phase is stable upon postdeposition high-temperature annealing at 900 °C under NH3.
Language
English
Source (journal)
Journal of vacuum science and technology: A: vacuum surfaces and films. - New York, N.Y., 1983, currens
Publication
New York, N.Y. : 2009
ISSN
0734-2101
Volume/pages
27:3(2009), p. 503-514
ISI
000265739100016
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
E-info
Web of Science
Record
Identification
Creation 22.06.2009
Last edited 01.11.2017
To cite this reference