Title
Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Source (journal)
Spectrochimica acta: part B: atomic spectroscopy. - Oxford, 1967, currens
Volume/pages
64(2009) :3 , p. 199-207
ISSN
0584-8547
0038-6987
ISI
000265755600002
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
As swipe samples from enrichment activities typically contain uranium particles with a detectable amount of fluorine, the question was raised whether the analysis of fluorine in particles could complement the information on the uranium isotope ratios. For this, uranium oxyfluoride particles were prepared from the controlled hydrolysis of uranium hexafluoride (UF6). The relative amount of fluorine was characterized by scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX), as well as ion-microprobe secondary ion mass spectrometry (IM-SIMS). Of particular interest was the assessment of the reduction of the amount of fluorine over time, and after exposure to UV-light and high temperatures. Micro-Raman spectrometry (MRS) was applied to look for differences in molecular structure between these various sample types. Both SEM-EDX and IM-SIMS showed a general reduction of the fluorine-to-uranium ratio after 12 years of storage. The exposure to UV-light and high temperatures was found to have accelerated the loss of fluorine. A distinct peak at 865 cm− 1 Raman shift was detected for the majority of particles analyzed by MRS. For the particles that were heat-treated, the Raman spectra were similar to the spectrum of U3O8. Although often large variations were observed between particles from the same sample, the three particle measurement techniques (IM-SIMS, SEM-EDX and MRS) showed some consistent trends. They therefore appear promising in terms of the ability to place bounds on particle age, as well as shedding light on the complex processes involved in UO2F2 particle ageing.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265755600002&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265755600002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265755600002&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle