Title
Atmospheric nitrogen fluxes at the Belgian coast: 2004-2006
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Source (journal)
Atmospheric environment : an international journal. - Oxford, 1994, currens
Volume/pages
43(2009) :24 , p. 3786-3798
ISSN
1352-2310
ISI
000268609000015
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Daily and seasonal variations in dry and wet atmospheric nitrogen fluxes have been studied during four campaigns between 2004 and 2006 at a coastal site of the Southern North Sea at De Haan (Belgium) located at coordinates of 51.1723° N and 3.0369° E. Concentrations of inorganic N-compounds were determined in the gaseous phase, size-segregated aerosol (coarse, medium, and fine), and rainwater samples. Dissolved organic nitrogen (DON) was quantified in rainwater. The daily variations in N-fluxes of compounds were evaluated with air-mass backward trajectories, classified into the main air-masses arriving at the sampling site (i.e., continental, North Sea, and Atlantic/UK/Channel). The three, non-episodic campaigns showed broadly consistent fluxes, but during the late summer campaign exceptionally high episodic N-deposition was observed. The average dry and wet fluxes for non-episodic campaigns amounted to 2.6 and 4.0 mg N m−2 d−1, respectively, whereas during the episodic late summer period these fluxes were as high as 5.2 and 6.2 mg N m−2 d−1, respectively. Non-episodic seasons/campaigns experienced average aerosol fluxes of 0.91.4 mg N m−2 d−1. Generally, the contribution of aerosol NH4+ was more significant in the medium and fine particulate fractions than that of aerosol NO3−, whereas the latter contributed more in the coarse fraction, especially in continental air-masses. During the dry mid-summer campaign, the DON contributed considerably (15%) to the total N-budget. Exceptionally high episodic aerosol-N inputs have been observed for the late summer campaign, with especially high deposition rates of 3.6 and 2.9 mg N m−2 d−1 for Atlantic/UK/Channel and North Sea-continental (mixed) air-masses, respectively. During this pollution episode, the flux of NH4+ was dominating in each aerosol fraction/air-mass, except for coarse continental aerosols. High deposition of gaseous-N was also observed in this campaign with an average total N-flux of 22.5-times higher than in other campaigns.
E-info
https://repository.uantwerpen.be/docman/iruaauth/2d492f/317f1ffacc5.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268609000015&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268609000015&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000268609000015&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle