Publication
Title
Second generation of vortex-antivortex states in mesoscopic superconductors: stabilization by artificial pinning
Author
Abstract
Antagonistic symmetries of superconducting polygons and their induced multivortex states in a homogeneous magnetic field may lead to the appearance of antivortices in the vicinity of the superconducting/normal-state boundary (where mesoscopic confinement is particularly strong). Resulting vortex-antivortex (V-Av) molecules match the sample symmetry but are extremely sensitive to defects and fluctuations and remain undetected experimentally. Here we show that V-Av states can reappear deep in the superconducting state due to an array of perforations in a polygonal setting, surrounding a central hole. Such states are no longer caused by the symmetry of the sample but rather by pinning itself, which prevents the vortex-antivortex annihilation. As a result, even micron size, clearly spaced V-Av molecules can be stabilized in large mesoscopic samples.
Language
English
Source (journal)
Physical review : B : solid state. - Lancaster, Pa, 1970 - 1978
Publication
Lancaster, Pa : 2009
ISSN
0556-2805
DOI
10.1103/PHYSREVB.79.174508
Volume/pages
79 :17 (2009) , p. 174508,1-174508,5
ISI
000266501100098
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 23.07.2009
Last edited 22.01.2024
To cite this reference