Title
Role of substrate on nucleation and morphology of gold nanoparticles produced by pulsed laser deposition
Author
Faculty/Department
Faculty of Sciences. Physics
Publication type
article
Publication
Lancaster, Pa ,
Subject
Physics
Source (journal)
Physical review : B : solid state. - Lancaster, Pa, 1970 - 1978
Volume/pages
79(2009) :23 , p. 235409,1-235409,6
ISSN
0556-2805
ISI
000267699500116
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
This work compares the morphology of gold nanoparticles (NPs) produced at room temperature on single-crystalline (MgO nanocubes and plates) and amorphous (carbon/glass plates) substrates by pulsed laser deposition (PLD). The results show that similar deposition and nucleation rates (>5×1013 cm−2 s−1) are achieved irrespective of the nature of the substrate. Instead, the shape of NPs is substrate dependent, i.e., quasispheres and faceted NPs in amorphous and single-crystalline substrates, respectively. The shape of the latter is octahedral for small NPs and truncated octahedral for large ones, with the degree of truncation being well explained using the Wulff-Kaichew theorem. Furthermore, epitaxial growth at room temperature is demonstrated for single-crystalline substrate. The large fraction of ions having energies higher than 200 eV and the large flux of species arriving to the substrate (1016 at. cm−2 s−1) involved in the PLD process are, respectively, found to be responsible for the high nucleation rates and epitaxial growth at room temperature.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/5aeecc/6af5d526.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000267699500116&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000267699500116&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000267699500116&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle