Publication
Title
Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory
Author
Abstract
We review our recent experimental and modeling results on how cerebellar Purkinje cells encode information in their simple spike trains and present a theory of the function of pauses and regular spiking patterns. The regular spiking patterns were discovered in extracellular recordings of simple spikes in awake and anesthetized rodents, where it was shown that more than half of the spontaneous activity consists of short epochs of regular spiking. These periods of regular spiking are interrupted by pauses, which can be tightly synchronized among nearby Purkinje cells, while the spikes in the regular patterns are not. Interestingly, pauses are affected by long-term depression of the parallel fiber synapses. Both in modeling and slice experiments it was demonstrated that long-term depression causes a decrease in the duration of pauses, leading to an increase of the spike output of the neuron. Based on these results we propose that pauses in the simple spike train form a temporal code which can lead to a rebound burst in the target deep cerebellar nucleus neurons. Conversely, the regular spike patterns may be a rate code, which presets the amplitude of future rebound bursts.
Language
English
Source (journal)
Neuroscience / International Brain Research Organization. - Oxford
Publication
Oxford : 2009
ISSN
0306-4522
DOI
10.1016/J.NEUROSCIENCE.2009.02.040
Volume/pages
162 :3 (2009) , p. 816-826
ISI
000268685400026
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 09.09.2009
Last edited 25.05.2022
To cite this reference