A general graphical procedure for finding motion centers of planar mechanismsA general graphical procedure for finding motion centers of planar mechanisms
Faculty of Sciences. Mathematics and Computer Science

article

2007New York, 2007

Mathematics

Advances in applied mathematics. - New York

38(2007):4, p. 419-444

0196-8858

000245905400001

E

English (eng)

University of Antwerp

For an infinitesimal motion of a given planar mechanisms we can consider a relative motion center for each pair of rigid components. The location of these relative centers is completely determined for mechanisms with only one internal degree of freedom. We give a graphical procedure to find all relative centers for such a mechanism in a given (non-singular) position, and give an inductive proof that it is general (by means of Henneberg sequences). Besides the known intersection techniques with AronholdKennedy lines and center lines of 2-dof subframeworks, we make use of a classical geometric construction due to J. Baracs. We also show how a graphical procedure for relative centers can be used to find new geometric descriptions for the special positions of some isostatic frameworks.

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000245905400001&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000245905400001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848

http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000245905400001&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848