Title
|
|
|
|
Tunneling-lifetime model for metal-oxide-semiconductor structures
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
In this paper we investigate the basic physics of charge carriers (electrons) leaking out of the inversion layer of a metal-oxide-semiconductor capacitor with a biased gate. In particular, we treat the gate leakage current as resulting from two combined processes: (1) the time-dependent decay of electron wave packets representing the inversion-layer charge and (2) the local generation of new electrons replacing those that have leaked away. As a result, the gate current simply emerges as the ratio of the total charge in the inversion layer to the tunneling lifetime. The latter is extracted from the quantum dynamics of the decaying wave packets, while the generation rate is incorporated as a phenomenological source term in the continuity equation. Not only do the gate currents calculated with this model agree very well with experiment, the model also provides an onset to solve the paradox of the current-free bound states representing the resonances of the Schrödinger equation that governs the fully coupled metal-oxide-semiconductor system. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review : B : solid state. - Lancaster, Pa, 1970 - 1978
| |
Publication
|
|
|
|
Lancaster, Pa
:
2009
| |
ISSN
|
|
|
|
0556-2805
| |
Volume/pages
|
|
|
|
80
:8
(2009)
, p. 085315,1-085315,10
| |
ISI
|
|
|
|
000269639300076
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|