Title
Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation Effects of oxygen addition to argon glow discharges: a hybrid Monte Carlo-fluid modeling investigation
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Source (journal)
Spectrochimica acta: part B: atomic spectroscopy. - Oxford, 1967, currens
Volume/pages
64(2009) :11/12 , p. 1266-1279
ISSN
0584-8547
0038-6987
ISI
000272910300016
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O− ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272910300016&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272910300016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272910300016&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle