Title
Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield
Author
Faculty/Department
Faculty of Sciences. Biology
Publication type
article
Publication
Washington, D.C. ,
Subject
Biology
Human medicine
Source (journal)
Proceedings of the National Academy of Sciences of the United States of America. - Washington, D.C.
Volume/pages
106(2009) :47 , p. 20109-20114
ISSN
0027-8424
1091-6490
ISI
000272180900067
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Quantitative traits, such as size and weight in animals and seed yield in plants, are distributed normally, even within a population of genetically identical individuals. For example, in plants, various factors, such as local soil quality, microclimate, and sowing depth, affect growth differences among individual plants of isogenic populations. Besides these physical factors, also epigenetic components contribute to differences in growth and yield. The network that regulates crop yield is still not well understood. Although this network is expected to have epigenetic elements, it is completely unclear whether it would be possible to shape the epigenome to increase crop yield. Here we show that energy use efficiency is an important factor in determining seed yield in canola (Brassica napus) and that it can be selected artificially through an epigenetic feature. From an isogenic canola population of which the individual plants and their self-fertilized progenies were recursively selected for respiration intensity, populations with distinct physiological and agronomical characteristics could be generated. These populations were found to be genetically identical, but epigenetically different. Furthermore, both the DNA methylation patterns as well as the agronomical and physiological characteristics of the selected lines were heritable. Hybrids derived from parent lines selected for high energy use efficiencies had a 5% yield increase on top of heterosis. Our results demonstrate that artificial selection allows the increase of the yield potential by selecting populations with particular epigenomic states.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272180900067&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272180900067&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000272180900067&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle