Title
Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition
Author
Faculty/Department
Faculty of Sciences. Chemistry
Faculty of Sciences. Physics
Publication type
article
Publication
Wuhan ,
Subject
Physics
Chemistry
Source (journal)
Materials Research Society symposium proceedings. - Wuhan
Volume/pages
(2009) :1203
ISSN
0272-9172
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.
Handle