Publication
Title
Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images
Author
Abstract
Purpose: To study, from a machine learning perspective, the performance of several machine learning classifiers that use texture analysis features extracted from soft-tissue tumors in nonenhanced T1-MRI images to discriminate between malignant and benign tumors. Materials and Methods: Texture analysis features were extracted from the tumor regions from T1-MRI images of clinically proven cases of 49 malignant and 86 benign soft-tissue tumors. Three conventional machine learning classifiers were trained and tested. The best classifier was compared to the radiologists by means of the McNemar's statistical test. Results: The SVM classifier performs better than the neural network and the C4.5 decision tree based on the analysis of their receiver operating curves (ROC) and cost curves. The classification accuracy of the SVM, which was 93% (91% specificity; 94% sensitivity), was better than the radiologist classification accuracy of 90% (92% specificity; 81% sensitivity). Conclusion: Machine learning classifiers trained with texture analysis features are potentially valuable for detecting malignant tumors in T1-MRI images. Analysis of the learning curves of the classifiers showed that a training data size smaller than 100 T1-MRI images is sufficient to train a machine learning classifier that performs as well as expert radiologists.
Language
English
Source (journal)
Journal of magnetic resonance imaging. - Chicago, Ill.
Publication
Chicago, Ill. : 2010
ISSN
1053-1807
Volume/pages
31:3(2010), p. 680-689
ISI
000275385900020
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 12.04.2010
Last edited 04.08.2017
To cite this reference