Title
|
|
|
|
Dynamics of multishell vortex structures in mesoscopic superconducting Corbino disks
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
We study the dynamics of vortex shells in mesoscopic superconducting Corbino disks, where vortices form shells as recently observed in micrometer-sized Nb disks. Due to the interplay between the vortex-vortex interaction, the gradient Lorentz force and the (in)commensurability between the numbers of vortices in shells, the process of angular melting of vortex-shell configurations becomes complex. Angular melting can start either from the center of the disk (where the shear stress is maximum) or from its boundary (where the shear stress is minimum) depending on the specific vortex configuration. Furthermore, we found that two kinds of defects can exist in such vortex-shell structures: intrashell and intershell defects. An intrashell defect may lead to an inverse dynamic behavior, i.e., one of the vortex shells under a stronger driving force can rotate slower than the adjacent shell that is driven by a weaker Lorentz force. An intershell defect always locks more than two shells until the gradient of the Lorentz force becomes large enough to break the rigid-body rotation of the locked shells. Such a lock-unlock process leads to hysteresis in the angular velocities of the shells. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
| |
Publication
|
|
|
|
Lancaster, Pa
:
2010
| |
ISSN
|
|
|
|
1098-0121
[print]
1550-235X
[online]
| |
Volume/pages
|
|
|
|
81
:13
(2010)
, p. 134504,1-134504,11
| |
ISI
|
|
|
|
000277207900079
| |
Full text (Publisher's DOI)
|
|
|
|
| |
Full text (open access)
|
|
|
|
| |
|