Title
|
|
|
|
Carbon clusters: from ring structures to nanographene
|
|
Author
|
|
|
|
|
|
Abstract
|
|
|
|
The lowest-energy configurations of Cn(n≤55) clusters are obtained using the energy-minimization technique with the conjugate gradient method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground-state configuration consists of a single ring for small number of C atoms and multiring structures are found with increasing n, which can be in planar, bowl-like or caplike form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground-state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphenelike configuration. Trigonal clusters are never the ground state while hexagonal-shaped clusters are only the ground state when they have zigzag edges. |
|
|
Language
|
|
|
|
English
|
|
Source (journal)
|
|
|
|
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
|
|
Publication
|
|
|
|
Lancaster, Pa
:
2010
|
|
ISSN
|
|
|
|
1098-0121
[print]
1550-235X
[online]
|
|
DOI
|
|
|
|
10.1103/PHYSREVB.81.195414
|
|
Volume/pages
|
|
|
|
81
:19
(2010)
, p. 195414,1-195414,12
|
|
ISI
|
|
|
|
000278142000103
|
|
Full text (Publisher's DOI)
|
|
|
|
|
|
Full text (open access)
|
|
|
|
|
|