Publication
Title
Graphene nanoribbons subjected to axial stress
Author
Abstract
Atomistic simulations are used to study the bending of rectangular graphene nanoribbons subjected to axial stress both for free boundary and supported boundary conditions. The shapes of the deformations of the buckled graphene nanoribbons, for small values of the stress, are sine waves where the number of nodal lines depend on the longitudinal size of the system and the applied boundary condition. The buckling strain for the supported boundary condition is found to be independent of the longitudinal size and estimated to be 0.86%. From a calculation of the free energy at finite temperature we find that the equilibrium projected two-dimensional area of the graphene nanoribbon is less than the area of a flat sheet. At the optimum length the boundary strain for the supported boundary condition is 0.48%.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2010
ISSN
1098-0121 [print]
1550-235X [online]
Volume/pages
82:8(2010), p. 085432,1-085432,6
Article Reference
085432
ISI
000281065100007
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 10.11.2010
Last edited 21.06.2017
To cite this reference