Publication
Title
Production and application of electron vortex beams
Author
Abstract
Vortex beams (also known as beams with a phase singularity) consist of spiralling wavefronts that give rise to angular momentum around the propagation direction. Vortex photon beams are widely used in applications such as optical tweezers to manipulate micrometre-sized particles and in micro-motors to provide angular momentum1, 2, improving channel capacity in optical3 and radio-wave4 information transfer, astrophysics5 and so on6. Very recently, an experimental realization of vortex beams formed of electrons was demonstrated7. Here we describe the creation of vortex electron beams, making use of a versatile holographic reconstruction technique in a transmission electron microscope. This technique is a reproducible method of creating vortex electron beams in a conventional electron microscope. We demonstrate how they may be used in electron energy-loss spectroscopy to detect the magnetic state of materials and describe their properties. Our results show that electron vortex beams hold promise for new applications, in particular for analysing and manipulating nanomaterials, and can be easily produced.
Language
English
Source (journal)
Nature. - London, 1869, currens
Publication
London : MacMillan , 2010
ISSN
0028-0836 [print]
1476-4687 [online]
DOI
10.1038/NATURE09366
Volume/pages
467 :7313 (2010) , p. 301-304
ISI
000281824900033
Full text (Publisher's DOI)
Full text (publisher's version - intranet only)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 02.12.2010
Last edited 23.08.2022
To cite this reference