Publication
Title
Electronic and magnetic properties of superlattices of graphene/graphane nanoribbons with different edge hydrogenation
Author
Abstract
Zigzag graphene nanoribbons patterned on graphane are studied using spin-polarized ab initio calculations. We found that the electronic and magnetic properties of the graphene/graphane superlattice strongly depends on the degree of hydrogenation at the interfaces between the two materials. When both zigzag interfaces are fully hydrogenated, the superlattice behaves like a freestanding zigzag graphene nanoribbon, and the magnetic ground state is antiferromagnetic. When one of the interfaces is half hydrogenated, the magnetic ground state becomes ferromagnetic, and the system is very close to being a half metal with possible spintronics applications whereas the magnetic ground state of the superlattice with both interfaces half hydrogenated is again antiferromagnetic. In this last case, both edges of the graphane nanoribbon also contribute to the total magnetization of the system. All the spin-polarized ground states are semiconducting, independent of the degree of hydrogenation of the interfaces. The ab initio results are supplemented by a simple tight-binding analysis that captures the main qualitative features. Our ab initio results show that patterned hydrogenation of graphene is a promising way to obtain stable graphene nanoribbons with interesting technological applications.
Language
English
Source (journal)
Physical review : B : condensed matter and materials physics. - Lancaster, Pa, 1998 - 2015
Publication
Lancaster, Pa : 2010
ISSN
1098-0121 [print]
1550-235X [online]
DOI
10.1103/PHYSREVB.82.165412
Volume/pages
82 :16 (2010) , p. 165412,1-165412,9
Article Reference
165412
ISI
000282569500011
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
CalcUA as central calculation facility: supporting core facilities.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 13.12.2010
Last edited 22.01.2024
To cite this reference