Title
Correlating quantitative MR imaging with histopathology in X-linked adrenoleukodystrophy Correlating quantitative MR imaging with histopathology in X-linked adrenoleukodystrophy
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Baltimore, Md ,
Subject
Human medicine
Source (journal)
American journal of neuroradiology. - Baltimore, Md
Volume/pages
32(2011) :3 , p. 481-489
ISSN
0195-6108
ISI
000288639800013
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
BACKGROUND AND PURPOSE: Quantitative MR imaging techniques may improve the pathologic specificity of MR imaging regarding white matter abnormalities. Our purposes were to determine whether ADC, FA, MTR, and MRS metabolites correlate with the degree of white matter damage in patients with X-ALD; whether differences in ADC, FA, and MTR observed in vivo are retained in fresh and formalin-fixed postmortem brain tissue; and whether the differences predict histopathology. MATERIALS AND METHODS: MRS metabolites, MTR, ADC, and FA, were determined in 7 patients with X-ALD in 3 white matter areas (NAWM, active demyelination, and complete demyelination) and were compared with values obtained in 14 controls. MTR, ADC, and FA were assessed in postmortem brains from 15 patients with X-ALD and 5 controls. Values were correlated with the degree of astrogliosis and density of myelin, axons, and cells. Equations to estimate histopathology from MR imaging parameters were calculated by linear regression analysis. RESULTS: MRS showed increased mIns, Lac, and Cho and decreased tNAA in living patients with X-ALD; the values depended on the degree of demyelination. MTR, ADC, and FA values were different in postmortem than in vivo white matter, but differences related to degrees of white matter damage were retained. ADC was high and FA and MTR were low in abnormal white matter. Correlations between histopathologic findings and MR imaging parameters were strong. A combination of ADC and FA predicted pathologic parameters best. CONCLUSIONS: Changes in quantitative MR imaging parameters, present in living patients and related to the severity of white matter pathology, are retained in postmortem brain tissue. MR imaging parameters predict white matter histopathologic parameters.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000288639800013&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000288639800013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000288639800013&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle