Publication
Title
Synchrotron X-ray fluorescence analysis in environmental and earth sciences
Author
Abstract
Compared to other microscopic analytical tools X-ray microscopy techniques have the advantage that the large penetration depth of X-rays in matter allows one to investigate the interior of an object without destructive sample preparation. In combination with X-ray fluorescence tomography, analytical information from inside of a specimen can be obtained. Different X-ray analytical techniques can be used to produce contrast, X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample. Scanning microscopy on the basis of various lens systems in synchrotron radiation sources provides a routine spatial resolution of now about 100 nanometer but in the foreseeable future a 1020 nanometer spatial resolution can be expected. X-ray absorption spectrometry can also provide chemical (speciation) information on the sample. All this makes X-ray microscopy attractive to many fields of science. In this paper the techniques are briefly reviewed and a number of applications in the earth, planetary and cosmos sciences are illustrated with state-of-the art examples, while applications in the environmental sciences and biology are also briefly discussed.
Language
English
Source (journal)
EPJ Web of Conferences
Publication
2010
ISSN
2100-014X
Volume/pages
9(2010), p. 165-180
ISI
000290751000013
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 07.02.2011
Last edited 09.07.2017
To cite this reference