Title
Activity-driven computational strategies of a dynamically regulated integrate-and-fire model neuron
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences . Biomedical Sciences
Publication type
article
Publication
Boston, Mass. ,
Subject
Biology
Human medicine
Computer. Automation
Source (journal)
Journal of computational neuroscience. - Boston, Mass.
Volume/pages
7(1999) :3 , p. 247-254
ISSN
0929-5313
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Abstract
Activity-dependent slow biochemical regulation processes, affecting intrinsic properties of a neuron, might play an important role in determining information processing strategies in the nervous system. We introduce second-order biochemical phenomena into a linear leaky integrate-and-fire model neuron together with a detailed kinetic description for synaptic signal transduction. In this framework, we investigate the membrane intrinsic electrical properties differentiation, showing the appearance of activity-dependent shifts between integration and temporal coincidence detection operating mode, for the single unit of a network.