Title
Chemkar PM10 : an extensive look at the local differences in chemical composition of PM10 in Flanders, Belgium Chemkar PM10 : an extensive look at the local differences in chemical composition of PM10 in Flanders, Belgium
Author
Faculty/Department
Faculty of Sciences. Chemistry
Publication type
article
Publication
Oxford ,
Subject
Chemistry
Source (journal)
Atmospheric environment : an international journal. - Oxford, 1994, currens
Volume/pages
45(2011) :1 , p. 108-116
ISSN
1352-2310
ISI
000285675600010
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
The results of Chemkar PM10, the first large scale chemical characterisation project of PM10 in Flanders are presented. Between September 2006 and September 2007 a total of 365 PM10 samples were collected by sampling every sixth day at six different sites in Flanders (Belgium) varying in character from urban background to rural. Samples were analysed for a series of elements, elemental and organic carbon, 13C/12C- and 15N/14N-isotopic ratios, and water-soluble ions. At three sites extra sampling was carried out to determine PAHs by means of a novel technique that uses sorption tubes consisting of polydimethylsiloxane (PDMS) foam, PDMS particles and a TENAX TA bed. Results showed that the most important fractions were secondary inorganic ions (nitrate, sulphate and ammonium): 41% (12.6 μg m−3), organic matter: 20% (6.1 μg m−3), crustal matter: 14% (4.3 μg m−3), sea salt: 8% (2.4 μg m−3) and elemental carbon: 4% (1.2 μg m−3). Although the general composition profile was rather similar for the six sites, substantial differences could be observed for some main components and for several trace metals such as chromium, copper, zinc, arsenic and lead. Although the average sum of the PAH 16 was quite variable between the three sites (between 132 and 248 ng m−3) the average sum of the PAH 7 was between 7 and 9 ng m−3 for the three sites. The largest relative differences between sites were found for elemental carbon and crustal matter, thereby indicating that there is some potential for local measures to reduce the concentrations of particulate matter by a few μg m−3. Both for carbon and nitrogen isotopic ratios significant differences in time were observed. Isotopic differences in location could only be detected for carbon.
E-info
https://repository.uantwerpen.be/docman/iruaauth/4edf4a/a50746b3e16.pdf
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285675600010&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285675600010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000285675600010&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle