Publication
Title
Biomimetic sonar : binaural 3D localization using artificial bat pinnae
Author
Abstract
This paper presents an advanced bio-inspired binaural sonar sensor capable of localizing reflectors in 3D space with a single reading. The technique makes use of broadband spectral cues in the received echoes only. Two artificial pinnae act as complex direction-dependent spectral filters on the echoes returning from the ensonified reflector. The active headrelated transfer function (AHRTF) is introduced to describe this spectral filtering as a function of the reflector angle, taking into account the transmitter radiation pattern, both pinnae and the particular sonar head geometry. 3D localization is performed by selecting the azimuthelevation pair with the highest a posteriori probability, given the binaural target echo spectrum. Experimental 3D localization results of a ball reflector show that the AHRTF carries sufficient information to discriminate between different reflector locations under realistic noise conditions. In addition, experiments with more complex reflectors illustrate that the AHRTF dominates the echo spectrum, allowing 3D localization in the presence of spectrum distortions caused by unknown reflector filtering. These experiments show that a fairly simple sonar device can extract more spatial information about realistic objects in its direct surroundings than is conventionally believed.
Language
English
Source (journal)
The international journal of robotics research / Massachusetts Institute of Technology. - Cambridge, Mass.
Publication
Cambridge, Mass. : 2011
ISSN
0278-3649
Volume/pages
30:8(2011), p. 975-987
ISI
000292701300002
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 18.02.2011
Last edited 21.06.2017
To cite this reference