Publication
Title
A preconditioned iterative solver for the scattering solutions of the Schrodinger equation
Author
Abstract
The Schrodinger equation defines the dynamics of quantum particles which has been an area of unabated interest in physics. We demonstrate how simple transformations of the Schrodinger equation leads to a coupled linear system, whereby each diagonal block is a high frequency Helmholtz problem. Based on this model, we derive indefinite Helmholtz model problems with strongly varying wavenumbers. We employ the iterative approach for their solution. In particular, we develop a preconditioner that has its spectrum restricted to a quadrant (of the complex plane) thereby making it easily invertible by multigrid methods with standard components. This multigrid preconditioner is used in conjunction with suitable Krylov-subspace methods for solving the indefinite Helmholtz model problems. The aim of this study is to report the feasibility of this preconditioner for the model problems. We compare this idea with the other prevalent preconditioning ideas, and discuss its merits. Results of numerical experiments are presented, which complement the proposed ideas, and show that this preconditioner may be used in an automatic setting.
Language
English
Source (journal)
Communications in computational physics
Publication
2012
ISSN
1815-2406
1991-7120
Volume/pages
11:2(2012), p. 415-434
ISI
000301924300011
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 07.03.2011
Last edited 08.06.2017
To cite this reference