Publication
Title
Crassulacean acid metabolism under severe light limitation : a matter of plasticity in the shadows?
Author
Abstract
Despite the increased energetic costs of CAM compared with C3 photosynthesis, it is hypothesized that the inherent photosynthetic plasticity of CAM allows successful acclimation to light-limiting conditions. The present work sought to determine if CAM presented any constraints to short and longer term acclimation to light limitation and to establish if and how metabolic and photosynthetic plasticity in the deployment of the four phases of CAM might facilitate acclimation to conditions of deep shade. Measurements of leaf gas exchange, organic acids, starch and soluble sugar (glucose, fructose, and sucrose) contents were made in the leaves of the constitutive CAM bromeliad Aechmea Maya over a three month period under severe light limitation. A. Maya was not particularly tolerant of severe light limitation in the short term. A complete absence of net CO2 uptake and fluctuations in key metabolites (i.e. malate, starch or soluble sugars) indicated a dampened metabolism whilst cell death in the most photosynthetically active leaves was attributed to an over-acidification of the cytoplasm. However, in the longer term, plasticity in the use of the different phases of gas exchange and different storage carbohydrate pools, i.e. a switch from starch to sucrose as the major carbohydrate source, ensured a positive carbon balance for this CAM species under extremely low levels of irradiance. As such, co-ordinated plasticity in the use of C3 and C4 carboxylases and different carbohydrate pools together with an increase in the abundance of light-harvesting complexes, appear to underpin the adaptive radiation of the energetically costly CAM pathway within light-limiting environments such as wet cloud forests and shaded understoreys of tropical forests.
Language
English
Source (journal)
Journal of experimental botany. - Oxford
Publication
Oxford : 2011
ISSN
0022-0957
DOI
10.1093/JXB/ERQ264
Volume/pages
62 :1 (2011) , p. 283-291
ISI
000284951900024
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 10.03.2011
Last edited 15.11.2022
To cite this reference