Title
Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics **in vitro** and **in vivo** Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics **in vitro** and **in vivo**
Author
Faculty/Department
Faculty of Pharmaceutical, Biomedical and Veterinary Sciences. Pharmacy
Publication type
article
Publication
Washington, D.C. ,
Subject
Pharmacology. Therapy
Source (journal)
Antimicrobial agents and chemotherapy. - Washington, D.C.
Volume/pages
55(2011) :6 , p. 2655-2661
ISSN
0066-4804
ISI
000290713400024
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation and dispersal, and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential anti-biofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde), or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain- and model-dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000290713400024&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000290713400024&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000290713400024&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle