Publication
Title
Response of the polaron system consisting of an impurity in a Bose-Einstein condensate to Bragg spectroscopy
Author
Abstract
We expand the existing polaron response theory, expressed within the Mori-Zwanzig projection operator formalism applicable for the transfer of arbitrary energy and zero momentum, for the case of finite momentum exchange. A general formula is then derived that can be used to calculate the response of a system to a probe that transfers both momentum and energy to the system. The main extension of the existing polaron response theory is the finite momentum exchange, which was not needed until now, since it is negligible for optical absorption. However, this formalism is needed to calculate the response of the polaronic system consisting of an impurity in a Bose-Einstein condensate (BEC) to Bragg spectroscopy. We show that the well-known features that appear in the optical absorption of the solid-state Fröhlich polaron are also present in the Bragg response of the BEC-impurity polaron. The f-sum rule is written in a form suitable to provide an independent consistency test for our results. The effect of lifetime broadening on the BEC-impurity spectrum is examined. The results derived here are discussed in the framework of an experimental realization consisting of a lithium impurity in a sodium condensate.
Language
English
Source (journal)
Physical review : A : atomic, molecular and optical physics. - Lancaster, Pa, 1990 - 2015
Publication
Lancaster, Pa : 2011
ISSN
1094-1622 [online]
1050-2947 [print]
DOI
10.1103/PHYSREVA.83.033631
Volume/pages
83 :3 (2011) , p. 033631,1-033631,9
Article Reference
033631
ISI
000288997200009
Medium
E-only publicatie
Full text (Publisher's DOI)
Full text (open access)
UAntwerpen
Faculty/Department
Research group
Project info
Dynamic effects in coupled superconductor-ferromagnet nanosystems.
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identifier
Creation 22.04.2011
Last edited 04.03.2024
To cite this reference