Title
Feasibility of diastolic function assessment with cardiac CT Feasibility of diastolic function assessment with cardiac CT
Author
Faculty/Department
Faculty of Medicine and Health Sciences
Publication type
article
Publication
Subject
Human medicine
Source (journal)
JACC : cardiovascular imaging
Volume/pages
4(2011) :3 , p. 246-256
ISSN
1936-878X
1876-7591
ISI
000289083000006
Carrier
E
Target language
English (eng)
Full text (Publishers DOI)
Affiliation
University of Antwerp
Abstract
Objectives: This study aimed to demonstrate the feasibility of multidetector row computed tomography (CT) for assessment of diastolic function in comparison with 2-dimensional (2D) echocardiography using tissue Doppler imaging (TDI). Background: Diastolic left ventricular (LV) function plays an important role in patients with cardiovascular disease. 2D echocardiography using TDI has been used most commonly to evaluate diastolic LV function. Although the role of cardiac CT imaging for evaluation of coronary atherosclerosis has been explored extensively, its feasibility to evaluate diastolic function has not been studied. Methods: Patients who had undergone 64-multidetector row CT and 2D echocardiography with TDI were enrolled. Diastolic function was evaluated using early (E) and late (A) transmitral peak velocity (cm/s) and peak mitral septal tissue velocity (Ea; cm/s). Peak transmitral velocity (cm/s) was calculated by dividing peak diastolic transmitral flow (ml/s) by the corresponding mitral valve area (cm2). Mitral septal tissue velocity was calculated from changes in LV length per cardiac phase. Subsequently, the estimation of LV filling pressures (E/Ea) was determined. Results: Seventy patients (46 men; mean age 55 ± 11 years) who had undergone cardiac CT and 2D echocardiography with TDI were included. Good correlations were observed between cardiac CT and 2D echocardiography for assessment of E (r = 0.73; p < 0.01), E/A (r = 0.87; p < 0.01), Ea (r = 0.82; p < 0.01), and E/Ea (r = 0.81; p < 0.01). Moreover, a good diagnostic accuracy (79%) was found for detection of diastolic dysfunction using cardiac CT. Finally, the study showed a low intraobserver and interobserver variability for assessment of diastolic function on cardiac CT. Conclusions: Cardiac CT imaging showed good correlations for transmitral velocity, mitral septal tissue velocity, and estimation of LV filling pressures when compared with 2D echocardiography. Additionally, cardiac CT and 2D echocardiography were comparable for assessment of diastolic dysfunction. Accordingly, cardiac CT may provide information on diastolic dysfunction.
Full text (open access)
https://repository.uantwerpen.be/docman/irua/d8c477/5023.pdf
E-info
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289083000006&DestLinkType=RelatedRecords&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289083000006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000289083000006&DestLinkType=CitingArticles&DestApp=ALL_WOS&UsrCustomerID=ef845e08c439e550330acc77c7d2d848
Handle