Title
|
|
|
|
Hopf algebra actions on differential graded algebras and applications
| |
Author
|
|
|
|
| |
Abstract
|
|
|
|
Let H be a finite dimensional semisimple Hopf algebra, A a differential graded (dg for short) H-module algebra. Then the smash product algebra A#H is a dg algebra. For any dg A#H-module M, there is a quasi-isomorphism of dg algebras: RHom(A) (M, M)#H -> RHom(A#H)(M circle times H, M circle times H). This result is applied to d-Koszul algebras, Calabi-Yau algebras and AS-Gorenstein dg algebras. |
| |
Language
|
|
|
|
English
| |
Source (journal)
|
|
|
|
Bulletin of the Belgian Mathematical Society Simon Stevin. - Brussels, 1994, currens
| |
Publication
|
|
|
|
Brussels
:
2011
| |
ISSN
|
|
|
|
1370-1444
[print]
2034-1970
[online]
| |
Volume/pages
|
|
|
|
18
:1
(2011)
, p. 99-111
| |
ISI
|
|
|
|
000289222500008
| |
Full text (Publisher's DOI)
|
|
|
|
| |
|