Publication
Title
General 2D Schrödinger-Poisson solver with open boundary conditions for nano-scale CMOS transistors
Author
Abstract
Employing the quantum transmitting boundary (QTB) method, we have developed a two-dimensional Schrödinger-Poisson solver in order to investigate quantum transport in nano-scale CMOS transistors subjected to open boundary conditions. In this paper we briefly describe the building blocks of the solver that was originally written to model silicon devices. Next, we explain how to extend the code to semiconducting materials such as germanium, having conduction bands with energy ellipsoids that are neither parallel nor perpendicular to the channel interfaces or even to each other. The latter introduces mixed derivatives in the 2D effective mass equation, thereby heavily complicating the implementation of open boundary conditions. We present a generalized quantum transmitting boundary method that mainly leans on the completeness of the eigenstates of the effective mass equation. Finally, we propose a new algorithm to calculate the chemical potentials of the source and drain reservoirs, taking into account their mutual interaction at high drain voltages. As an illustration, we present the potential and carrier density profiles obtained for a (111) Ge NMOS transistor as well as the ballistic current characteristics.
Language
English
Source (journal)
Journal of computational electronics. - Place of publication unknown
Publication
Place of publication unknown : 2008
ISSN
1569-8025
Volume/pages
7:4(2008), p. 475-484
ISI
000209032500002
Full text (Publisher's DOI)
UAntwerpen
Faculty/Department
Research group
Publication type
Subject
Affiliation
Publications with a UAntwerp address
External links
Web of Science
Record
Identification
Creation 10.06.2011
Last edited 17.07.2017
To cite this reference